
SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 1

Contingency Software in Autonomous Systems

Robyn Lutz, JPL/Caltech & ISU
Ann Patterson-Hine, NASA Ames

NASA OSMA Software Assurance Symposium
July 18-20 , 2006

Technical Briefing

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at NASA
Ames Research Center, under a contract with the National Aeronautics and Space Administration. The work was
sponsored by the NASA Office of Safety and Mission Assurance under the Software Assurance Research Program
led by the NASA Software IV&V Facility. This activity is managed locally at JPL through the Assurance and
Technology Program Office.

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 2

Contingency Software in Autonomous Systems
Problem

PROBLEM STATEMENT

Autonomous vehicles currently have a limited capacity
to diagnose and mitigate failures.

We need to be able to handle a broader range of
contingencies (anomalous situations).

A contingency is an event or condition (as an emergency) that may but is
not certain to occur [Merriam-Webster]

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 3

1. Speed up diagnosis and mitigation of anomalous situations.
2. Automatically handle contingencies, not just failures.
3. Enable projects to select a degree of autonomy consistent with

their needs and to incrementally introduce more autonomy.
4. Augment on-board fault protection with verified contingency

scripts

Contingency Software in Autonomous Systems
Goals

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 4

Overview of this year’s accomplishments (1)

Contingency Software in Autonomous Systems

• Completed Autonomous Rotorcraft Project (UAV) case study
– Documented process & results (1 published & 2 submitted

papers)
– Performed hardware-in-loop testing of diagnostic tree
– Project applied results, modifying camera controller to enable

autonomous switching between color and video cameras
• Modeled MER Critical Pointing software to be reused on MSL

– Called if commandability lost & before trajectory-correction
maneuvers

– Auto-generated diagnostic tree from TEAMS model of what
is known when a “quit-failed” signal occurs

– Supplemented available project documentation before reuse

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 5

Overview of this year’s accomplishments (2)

Contingency Software in Autonomous Systems

• New case study
– ADAPT emulates a typical spacecraft power system with

redundant power buses, a solar panel, and battery storage
– The approach for developing contingencies resulted in critical

function identification and preliminary identification of required
contingency plans

• Described work to date at the Mini-SAS at JPL
• Data availability potentially high (needs packaging, sanitizing of

models)
• Technology Readiness Level:

– FY05: 3 (“Experimental demonstration of critical function &/or
proof of concept”)

– FY06: 4 (“Validation in a lab environment”) on grounded
rotorcraft

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 6

What is a contingency?

• Contingencies are obstacles to the fulfillment of a system’s high-
level requirements that can arise during real-time operations
– Failures: camera fails due to hardware or software problem
– Operational situations of concern: lens cap left on means that all

images are black, so can’t land unassisted
– Environmental situations of concern: strong crosswind interferes

with imaging, thus with finding landing site
• Contingency-handling involves requirements for detecting,

identifying and responding to contingencies.
• Contingency handling includes, but extends, traditional fault

protection

Contingency Software in Autonomous Systems

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 7

• Something previously not done automatically is now done by the
software
– Previously done manually, or
– Previously could not be done

• Example of incremental autonomy:
– Collision avoidance (not hitting buildings)
1. Remote control by pilot steering from ground
2. Path calculated on ground, loaded into system, path-plan

executed in flight
3. Path calculated in flight based on real-time imaging

• Autonomy allows system to detect and respond to a broader class
of anomalies in many more ways

Contingency Software in Autonomous Systems
Autonomy

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 8

• The rotorcraft software is safety-critical:
– Requires collision-avoidance
– Requires autonomous take-off & landing in populated areas
– Used for critical missions: finding lost hikers, downed pilots;

detecting highway accidents; imaging (early warning) forest fires

Contingency Software in Autonomous Systems
Safety-Critical

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 9

1. Identify contingencies that risk mission-critical functions in a power
system testbed (using S-FTA, S-FMECA, Obstacle Analysis)

2. Model contingencies & autonomous recovery actions using TEAMS
(Testability And Engineering Maintenance System, QSI)

3. Analyze contingencies: TEAMS produces diagnostic tree of checks
needed to detect & isolate contingency, identifies missing checks and
recovery actions

4. Code contingencies’ diagnosis & recovery behavior in the project’s
planner scripting language (auto-translation from TEAM’s XML
output)

5. Verify contingency scripts with hardware-in-loop simulation

Using the above steps:
• Verify contingency plans used by NASA projects
• Investigate issues in coverage of contingencies
• Test results on power system testbed

Contingency Software in Autonomous Systems
Approach

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 10

Contingency Software in Autonomous Systems
Contingency analysis

• Used Bi-Directional Safety Analysis to find contingencies
– Forward analysis from potential failures to their effects (Software

Failure Modes, Effects & Criticality Analysis)
– Backward analysis from failures to contributing causes (Software

Fault Tree Analysis)
• Guided thinking about possible ways to handle contingencies:

– Use “Mitigation” column in SFMECA
– Remove leaf nodes from SFTA graphs
– Use obstacle resolution patterns [van Lamsweerde & Letier, 2000]

• TEAMS produces a diagnostic tree of checks needed to detect & isolate
contingencies; identifies missing checks and recovery action
– “Testability Engineering and Maintenance System”
– Modeling & analysis toolset
– Won NASA Space Act Award
– Used successfully on 2nd generation RLV IVHM risk reduction

program

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 11

</LABEL>
<SYMPTOM />

- <NODE LABEL="1"
TYPE="TEST"
ID="T.small_stereo_0.1.2.
4.0" PASS="YES"
FAIL="NO">
- <PARA>
- <![CDATA[

Contingency Software in Autonomous Systems
Approach

1. TEAMS Model

2. Diagnostic Tree
auto-generated

3. XML auto-translated
to verify contingency
handling on platform

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 12

Obstacle analysis approach

• KAOS framework for goal-oriented obstacle analysis [van
Lamsweerde & Letier, 2000]
– Goal is a set of desired behaviors
– Obstacle is a set of undesirable behaviors that impede a

goal
• Relevance to application:

– Contingencies are
• Obstacles to achieving goals, or
• Indications that goals are unrealizable with available

agents
• Advantages

– Structured approach early-on (anticipatory planning)
– Supports more formal analysis, as needed

Contingency Software in Autonomous Systems

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 13

Identifying contingencies & contingency-handling software actions

• Step 1. Identify the goals
• Step 2. Identify the agents
• Step 3. Identify the obstacles to the goals (these are the

contingencies)
• Step 4. Identify alternative resolutions to the obstacles (the

contingency-handling that can be done autonomously)
• Step 5. Select a resolution among the alternatives

Contingency Software in Autonomous Systems

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 14

• Requirements evolution
– Use goal & obstacle analysis to refine requirements in a developing

system [Anton & Potts]
• Maintenance

– Focus on management of requirements changes [Bennett &
Rajlich]

– Evaluate in terms of traceability or change-impact [Cleland-Huang]
• Dynamic monitoring

– Monitor operational systems for mismatch assumptions/
environment & perform remedial evolutions [Fickas & Feather]

• Autonomous fault handling with AI planners [Brat et al., Chien et al.]
• Safety in autonomous systems [Fox & Das, ESA ESTEC]
• Vehicle health management [Patterson-Hine et al.]

Contingency Software in Autonomous Systems
Other related work

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 15

Right Grayscale Camera

Left Grayscale Camera

Color Camera

Vision Computer

Flight Computer

Camera
Manager

Stereo Vision
Stereo

Conversion to
World Frame

Stereo
Point Cloud In
World Frame

Tilt Control

SICK
Laser

Image
Rectification

R image

L image

L image

Pan/Tilt

Camera Pose
MIDG

GPS

3-axis accelerometer

3-axis gyro

Laser
Conversion to
World Frame

Laser Point
Cloud In

World Frame

IMU: 6 DOF

Tilt

6 DOF

Contingency Software in Autonomous Systems
Overview of perception system

6 DOF

Perception is a critical function in systems

requiring obstacle avoidance, threat detection,

science missions and “opportunistic” discovery.

Contingency Software in Autonomous Systems
Perception instrumentation onboard rotorcraft

Gray scale wing tip (stereo vision)

Color Camera

Firewire Hub

Onboard Flight Computer

Left WingRight Wing

Scanning Laser Range
Finder (SICK)

RS232

Firewire

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 17

• Cases in which the cameras are a critical system:
– Cameras assigned responsibility during nominal ops

• No line of sight -> Camera provides position info
– Cameras are backup when other subsystems fail

• Failed/degraded GPS -> Camera provides position info
• Failed/degraded ARP -> Camera provides landing-site data

– Images as mission objective (surveillance)
• Failure of cameras can jeopardize success

• Thanks to Matt Whalley, Autonomous Rotorcraft Project Manager,
& to Rob Harris, Chad Frost, Doron Tal, Stacy Nelson, Anupa
Bajwa

Contingency Software in Autonomous Systems
Camera criticality

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 18

What do we know when a “quit-failed”
signal occurs?

Contingency Software in Autonomous Systems
Critical pointing for Mars spacecraft

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 19

•Autonomous, contingency response for critical scenarios such as
commandability loss, & before critical trajectory-correction maneuvers
•Thanks to Tracy Neilson, MER/MSL

Contingency Software in Autonomous Systems
Critical pointing for Mars spacecraft

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 20

Contingency Software in Autonomous Systems
Emulates a typical spacecraft power system

•Thanks to Scott Poll, ADAPT manager

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 21

Contingency Software in Autonomous Systems
Preliminary identification of some required contingency plans

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 22

Properties for each function,
switch & test-point are entered
into the TEAMS tools

TEAMS builds a Dependency Matrix in which
each row is a fault source (e.g., a camera that
can fail) and each column is a test (e.g.,
whether we have a good Stereo image).
Here, we select the normal or contingency
scenario (camera OK or not) for the analysis.

Contingency Software in Autonomous Systems
Results

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 23

Executing the Contingency scenario, we check
that the behavior is correct: left COLOR camera
is available (no red slash) & being used; confirm
that tests can isolate failure to which camera.

Most useful: the automatic Diagnostic Tree:
--Shows best sequence of checks

to detect & isolate
--Shows indistinguishable failures
(“ambiguity groups”)

</LABEL>
<SYMPTOM />

- <NODE LABEL="1"
TYPE="TEST"
ID="T.small_stereo_0.1.2.4.0
" PASS="YES" FAIL="NO">
- <PARA>
- <![CDATA[

Contingency Software in Autonomous Systems
Results

--XML output option auto- translated into
rotorcraft’s planning language (APEX) to simulate
contingencies on the vehicle

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 24

Contingency Software in Autonomous Systems
Potential applications

• Contingency management is essential to the robust
operation of complex systems such as spacecraft and
Unpiloted Aerial Vehicles (UAVs)

• Automatic contingency handling allows a faster response to
unsafe scenarios with reduced human intervention on low-
cost and extended missions

• Results, applied to the Autonomous Rotorcraft Project and
Mars Science Lab, pave the way to more resilient
autonomous systems

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 25

Next Steps
Contingency Software in Autonomous Systems

Investigate and model with TEAMS key contingencies involved in safe

software reconfiguration of power distribution systems to support

autonomous operations

Demonstrate and verify a subset of the contingency responses we have

developed on available platforms

Support transfer to other NASA projects

SAS_06_Contingency_Lutz_Patterson-Hine_Tech_Briefing 26

• Improved contingency handling needed to safely relinquish
control of unpiloted vehicles to autonomous controllers

• More autonomous contingency handling needed to support
extended mission operations

Relevance to NASA
Contingency Software in Autonomous Systems

ARC

ARC

JPL

	What is a contingency?
	Contingency Software in Autonomous Systems�Contingency analysis�
	Obstacle analysis approach
	Identifying contingencies & contingency-handling software actions

